
www.manaraa.com

Softw Syst Model (2014) 13:713–734
DOI 10.1007/s10270-012-0270-z

THEME SECTION PAPER

Extracting models from source code in software modernization

Javier Luis Cánovas Izquierdo · Jesús García Molina

Received: 22 March 2011 / Revised: 25 April 2012 / Accepted: 23 July 2012 / Published online: 9 September 2012
© Springer-Verlag 2012

Abstract Model-driven software modernization is a dis-
cipline in which model-driven development (MDD) tech-
niques are used in the modernization of legacy systems.
When existing software artifacts are evolved, they must be
transformed into models to apply MDD techniques such
as model transformations. Since most modernization sce-
narios (e.g., application migration) involve dealing with
code in general-purpose programming languages (GPL), the
extraction of models from GPL code is an essential task in
a model-based modernization process. This activity could
be performed by tools to bridge grammarware and MDD
technical spaces, which is normally carried out by dedi-
cated parsers. Grammar-to-Model Transformation Language
(Gra2MoL) is a domain-specific language (DSL) tailored to
the extraction of models from GPL code. This DSL is actu-
ally a text-to-model transformation language which can be
applied to any code conforming to a grammar. Gra2MoL

Communicated by Dr. D. Tamzalit, B. Schätz, D. Deridder
and A. Pierantonio.

J. L. Cánovas Izquierdo (B) · J. García Molina
University of Murcia, Murcia, Spain
e-mail: jlcanovas@um.es

J. García Molina
Depto. de Informática y Sistemas, Facultad de Informática,
Universidad de Murcia, Campus de Espinardo,
30071 Murcia, Spain
e-mail: jmolina@um.es

J. L. Cánovas Izquierdo
AtlanMod, Ecole des Mines de Nantes, INRIA,
LINA, EMN, Nantes, France
e-mail: javier.canovas@inria.fr

Present Address:
J. L. Cánovas Izquierdo
École des Mines de Nantes, La Chantrerie 4,
rue Alfred Kastler, B.P. 20722, 44307 Nantes, France

aims to reduce the effort needed to implement grammarware-
MDD bridges, since building dedicated parsers is a complex
and time-consuming task. Like ATL and RubyTL languages,
Gra2MoL incorporates the binding concept needed to write
mappings between grammar elements and metamodel ele-
ments in a simple declarative style. The language also pro-
vides a powerful query language which eases the retrieval
of scattered information in syntax trees. Moreover, it incor-
porates extensibility and grammar reuse mechanisms. This
paper describes Gra2MoL in detail and includes a case study
based on the application of the language in the extraction of
models from Delphi code.

Keywords Model-driven engineering · Model-driven
software development · Domain-specific languages ·
Software modernization · Model-driven software
modernization

1 Introduction

Model-driven software development (MDD) is gaining
increasing acceptance, mainly as a result of its ability to raise
the level of abstraction and automation in the construction
of software. Although the most common MDD approaches
(e.g., MDA, software factories or domain-specific develop-
ment) are aimed at building new software systems, models
have also shown the potential to evolve existing systems.
MDD techniques, as metamodeling and model transfor-
mations, can help to reduce software evolution costs and
improve the quality of the artifacts evolved by automating
many basic activities in software change processes, such as
representing source code at a higher level of abstraction [1]
or obtaining information such as metrics [2].

The growing interest in using MDD to manage soft-
ware evolution is mainly focused on the reengineering or

123

www.manaraa.com

714 J. L. Cánovas Izquierdo, J. García Molina

modernization of legacy systems. Several software migration
projects have been carried out with model-driven approaches
[1,3,4]; modernization tool vendors are offering model-
driven solutions (OBEO or Mia Software). And the OMG’s
Architecture Driven Modernization (ADM) initiative [5] is
defining a set of standard metamodels which represent the
information normally managed in modernization tasks.

When software artifacts are evolved by applying MDD, it
is necessary for them to be represented as models to execute
model transformations that generate new evolved artifacts.
For example, in a scenario of language-to-language migra-
tion, the first step is to extract models from the application
code written in the source language. Similarly, in a modern-
ization process to improve the data quality, models should
be extracted from data schemas. Once these initial models
have been obtained, model transformations can be applied
to generate higher level abstraction models and finally the
new artifacts (e.g., code in other language or an improved
data schema). Other operations on models, such as model
comparison or synchronization, may also be applied.

Since most modernization scenarios [6], such as language-
to-language conversion or platform migration, involve dealing
with code expressed in some general-purpose programming
languages (GPL), techniques and tools providing efficient
means to extract models from GPL code are essential in
model-driven modernization. In these scenarios, models con-
forming to a target metamodel (e.g., an abstract syntax tree
metamodel) should be obtained from source code conform-
ing to the grammar of a GPL. Although a modernization can
also involve non-GPL code, which could also conform to
a grammar (e.g., code of scripting language), most of the
source code to be evolved is GPL code.

The relationship between the pairs of concepts gram-
mar/program and metamodel/model is an example of a bridge
between two different technical spaces [7], in particular
grammarware and MDD (also known as modelware). Sev-
eral tools whose aim is to define textual domain-specific
languages (DSLs), such as Xtext [8] or EMFText [9], pro-
vide a grammarware–modelware bridge which allows mod-
els to be extracted from a DSL program. However, these
tools are not appropriate for the extraction of models from
GPL code, because DSLs have a simpler structure than
GPLs, which require an in-depth customization of the tool.
Dedicated parsers (also known as model discoverers) [1,3]
are,therefore, normally implemented to obtain models from
code conforming to a grammar. These parsers perform
model-generation tasks in addition to code parsing. Firstly, a
syntax tree (i.e., an abstract or concrete syntax tree) is created
from the source code, and this syntax tree is then traversed
to obtain the information needed to create the model ele-
ments. This is a complex task which requires both collecting
scattered information and resolving references in the syntax
tree.

Since the construction of such dedicated parsers is a
time-consuming task, we have defined a DSL, called Gram-
mar To Model Transformation Language (Gra2MoL), which
has been specifically designed to extract models from GPL
code, although it can be used for any software language
conforming to a grammar. Model transformations are clas-
sified into three categories [10]: model-to-model transfor-
mations whose input and output are models; model-to-text
transformations, which generate software artifacts (e.g., GPL
code and database schemas) from a source model, and
text-to-model transformations which obtain models from
existing software artifacts. Gra2MoL would, therefore, be
a text-to-model transformation language whose source arti-
facts must be described by a grammar. While there are a num-
ber of transformation languages for model-to-model trans-
formations (e.g., ATL [11], QVT [12] or RubyTL [13]) and
model-to-text transformations (e.g., MofScript [14], Xpand
[15]), Gra2MoL might be considered the first proposal for a
text-to-model language, at least to the best of our knowledge.

When designing a model transformation language, two
key design choices are how to express the mappings between
source and target elements and how to navigate through the
source artifact. Gra2MoL allows mappings to be established
between grammar elements and target metamodel elements
in a declarative manner that is similar to how mappings are
expressed in model-to-model transformation languages such
as ATL or RubyTL using the binding construct [11]. Fur-
thermore, as a Gra2MoL transformation represents the code
in the form of a syntax tree, Gra2MoL provides a powerful
query language to ease the navigation and querying of such
a tree when writing mappings.

The first version of Gra2MoL, which supported the core
features of the language, was presented in refs. [16,17]. Since
then, the language has evolved to include new basic fea-
tures such as: (1) reuse mechanisms at rule-level (i.e., mixin
rules), (2) a new kind of rule for dealing with expressions effi-
ciently (i.e., skip rules), and (3) an extensibility mechanism to
add new operators. In addition, the development of new fea-
tures along with the experience gained in using the language
in several case studies (model extraction from PL/SQL,
Delphi, Bash scripts and more are included in the Gra2MoL
website [18]) allowed us to identify new functionalities to
improve the expressiveness, usability and performance. The
new added extensions are the following: (1) iterators and
operators in the query language, (2) copy rules as they exist
in ATL and RubyTL, (3) CDO and Morsa model repositories
are supported to manage large models efficiently, and (4) sup-
port for island grammars. Experiences with Gra2MoL have
shown significant advantages in relation to using dedicated
parsers: a reduction in development time, the maintenance is
facilitated and existing grammars can be reused.

This paper is organized as follows. Section 2 analyzes
the difficulties encountered when using existing solutions

123

www.manaraa.com

Extracting models from source code in software modernization 715

for model extraction, and the motivation for Gra2MoL is pre-
sented. In Sect. 3, we describe the language used to query con-
crete syntax trees provided by Gra2MoL. Section 4 presents
the main features of Gra2MoL and explains how it has been
implemented, while Section 5 shows an example of the lan-
guage. Finally, Sect. 6 presents our conclusions and some
future work.

2 Model extraction from source code

This section aims to motivate the approach proposed in this
paper. Firstly, model extraction is presented as a task which
requires a bridge to be built from grammarware to model-
ware, and then, several approaches are contrasted as possi-
ble techniques for implementing such a bridge. We identify
the main issues to be addressed and discuss the limitations
of each approach. Finally, we introduce the Gra2MoL lan-
guage and indicate how this DSL overcomes the limitations
identified previously.

Figure 1 shows the elements involved in the process of
extracting models from code conforming to a grammar. This
process is a text-to-model transformation T which has as its
input a program P along with the grammar definition G to
which it conforms. The transformation manages P as either
an abstract syntax tree (AST) or a concrete syntax tree (CST).
In this paper, we use the term “syntax tree” to refer to both
AST and CST. The execution of T generates a target model
MT conforming to a target metamodel M MT representing
the information to be extracted, which is usually more com-
plex than a syntax tree. The extraction process is driven by
a specification of the mappings between the grammar ele-
ments and the metamodel elements. As we will see, the form
of these mappings is different depending on each approach
considered for the extraction.

The notion of bridging technical spaces is proposed in
ref. [7] to address the integration of MDD with other tech-
nologies (e.g., grammar, XML or ontologies). A text-to-
model transformation is, therefore, an example of a task
which requires a unidirectional bridge to be built between
grammarware and modelware technical spaces as illustrated
in Fig. 2, which shows OMG’s layered metamodeling archi-
tecture as realized for these technical spaces.

With GPL code, creating this bridge requires an efficient
mechanism to traverse syntax trees since the model elements

Fig. 1 Process of extracting models from source code

Fig. 2 Bridge between grammarware and MDE technical spaces

to be extracted are usually composed of information that is
scattered in such trees. In particular, this scattering is mainly
caused by the means used to represent the references between
elements. Models are graphs and any model element can
directly refer to another, whereas in a syntax tree that repre-
sents certain code which conforms to a GPL grammar, the
references between grammar elements are implicitly estab-
lished by means of identifiers. Transforming an identifier-
based reference into an explicit reference involves looking
for the “identified” node on the syntax tree. For instance, if a
model element is extracted from a “function call” statement
where one argument is a global variable, certain necessary
information, such as the type of the variable or the function
signature, is located outside the current scope (ref. [19] calls
this kind of transformations global-to-local transformations).
The scattering problem may also appear when the semantic
gap between the source code and the target metamodel is
high, e.g., a model element representing a metric that counts
the number of classes could require the traversal of the source
code to count all class declarations in Java.

Two main issues to be tackled by a mechanism for extract-
ing models from GPL code are therefore: (1) establishing
the mapping between grammar elements and metamodel ele-
ments, and (2) retrieving scattered information from syntax
trees. Next, we analyze how dedicated parsers, DSL defi-
nition tools, program transformation languages and model-
to-model transformation languages could be used to build
grammarware–modelware bridges in the case of GPL code.

2.1 Approaches for model extraction

2.1.1 Dedicated parsers

The chosen strategy is normally that of creating dedicated
parsers. Given a grammar and a target metamodel, a ded-
icated parser provides a specific solution which performs

123

www.manaraa.com

716 J. L. Cánovas Izquierdo, J. García Molina

both parsing and model-generation tasks. The former is in
charge of extracting a syntax tree from the source code and the
latter traverses this syntax tree to generate the target model.
For example, both in refs. [1] and [4], dedicated parsers are
built to extract models from PL/SQL code. However, dedi-
cated parser development is a time-consuming and expensive
task, because the syntax tree traversals must be hardcoded
both to collect scattered information and to resolve refer-
ences. In addition, mappings are also hardcoded, which hin-
der mantainability. The effort required is usually alleviated
by automatically extracting an AST from the source code.
This step is performed using an API, which is intended to
make the management of this tree easier. An example of such
APIs is the JDT Eclipse project [20], which works with Java
source code. But APIs do not currently exist for a number of
the GPLs widely used in modernization (e.g., PL/SQL lan-
guage). In addition, although these APIs tackle AST extrac-
tion and management, a mechanism for retrieving scattered
information must still be hard-coded, so APIs do not consid-
erably shorten the development time.

A strategy to help to build dedicated parsers is supported
by the MoDisco (Model Discovery) modernization frame-
work [21], which is part of the Eclipse Generative Modeling
Technology (GMT) component [22]. This framework is cur-
rently under development and its objective is to facilitate the
construction of tools to support software modernization use
cases. It provides (1) a set of metamodels to describe soft-
ware systems (e.g., an implementation of the KDM meta-
model [23]), (2) tools to understand complex systems (e.g.,
a model editor specially adapted to deal with huge models)
and (3) dedicated parsers (“discoverers” in MoDisco termi-
nology) to obtain models from legacy systems and use them
in modernization use cases. The discoverers which are cur-
rently available allow models representing the syntax tree to
be extracted from XML files and Java source code. The devel-
oper must, therefore, traverse the extracted models to obtain
models conforming to the target metamodel and model-to-
model transformations are still needed. It is also important to
note that our approach was developed at the same time that
MoDisco was being implemented.

2.1.2 DSL definition tools

The definition of textual DSLs aimed to express models in
MDD solutions is another scenario in which a grammarware–
modelware bridge is needed. Since textual DSL definition
tools (also known as language workbenchs [24]) provide the
functionality of converting DSL programs into models and
vice versa, they must implement one of these bridges. These
tools generate a dedicated parser and a DSL editor from the
specification of the DSL’s abstract and concrete syntaxes.
They may, therefore, be considered as an alternative to devel-
oping a dedicated parser.

Two approaches are supported by these tools to specify
both the abstract and the concrete syntaxes. In grammar-
based tools, such as Xtext [8] and TEF [25], the developer
uses an EBNF-like notation to specify both the grammar,
which include rules intended to specify the mapping for the
corresponding metamodel, and the concrete syntax. In some
cases, such as in Xtext, the metamodel can also be automat-
ically generated from this specification. On the other hand,
metamodel-based tools, such as EMFText [9] and TCS [26],
have a metamodel with annotations that specify the concrete
syntax as input, and the grammar is automatically generated
from this annotated metamodel. Indeed, a tool can support
both approaches as in the case of the last version of Xtext.

Metamodel-based definition tools are not well suited to
deal with GPLs as stated in ref. [26]: “If the problem at hand
is to develop a single, eventually general-purpose language
then the efforts for developing a dedicated parser are worth-
while” (rather than using TCS). As a DSL has a simpler struc-
ture than a GPL, these tools do not address several problems
encountered in the management of GPL code. This unsuit-
ability is evidenced when EMFText is used to implement
bridges for GPLs. The tool must be customized in depth,
mainly to adapt the generated grammar to the GPL one.
For instance, the work needed to implement a Java bridge
implied so many changes to the tool that a new project called
Jamopp [27] had to be created. Moreover, these approaches
are not well suited to a model-driven modernization, since a
metamodel corresponding to the GPL grammar is not usually
available.

With regard to grammar-based approaches, several impor-
tant limitations arise when they are used to extract models
from GPL code. Regarding Xtext, the metamodel generated
is of poor quality, because it includes superfluous elements
and grammatical aspects, and the semantic gap between this
metamodel and the desired target metamodel (e.g., an AST
metamodel) is thus very high. A model-to-model transfor-
mation is, therefore, required to convert models generated
by Xtext into models conforming to the desired metamodel.
However, since current model-to-model transformation lan-
guages do not offer an efficient mechanism to resolve the
problem of gathering scattered information, the definition
of this transformation is a complex task, as described below
when commenting on model transformation languages. With
regard to TEF, although this tool can use any target meta-
model, it only provides mechanisms to resolve simple refer-
ences existing in DSLs (i.e., identifier-based references), for
more complex references (e.g., package-based references in
GPLs) it would require reference solvers to be hardcoded.

Moreover, neither existing grammar reuse (i.e., the reuse
of grammars for well-known parser generators such as
ANTLR) nor the reuse of Xtext/TEF grammar specifica-
tions is promoted. On the one hand, translating a gram-
mar specification provided by a parser generator into the

123

www.manaraa.com

Extracting models from source code in software modernization 717

EBNF-based specification used is extremely complicated,
since some parser options which are needed to recognize
GPLs cannot be specified (e.g., in Java, the use of backtrack-
ing or the inclusion of syntactic predicates). On the other
hand, these grammar specifications are oriented toward a
specific metamodel so they include specific rules for such
a metamodel.

Wimmer et al. [28] and Kunert [29] have proposed improv-
ing the quality of the generated metamodel by applying
heuristics and including manual annotations to the grammar.
However, the quality of the metamodel generated from a GPL
grammar is still low and it is necessary to additionally define a
model-to-model transformation. Moreover, tools supporting
these two approaches are not yet available.

Prinz et al. [30] presented a metamodel-based approach
to define the SDL language which outlines a notation for
expressing mappings between grammar and metamodel ele-
ments. However, when using this framework with GPLs, the
main problem which arises is the lack of support for resolv-
ing references. Although the concept of identifier resolvers
is incorporated to tackle this problem, it is still necessary to
hardcode them.

2.1.3 Program transformation languages

Program transformation languages, such as Stratego/XT [31]
and TXL [32], could be used to extract models from source
code by expressing the abstract syntax as a context-free gram-
mar rather than a metamodel. However, when such languages
are used, the following limitations are encountered. Firstly,
the result of a program transformation execution is a pro-
gram conforming to a grammar, and a tool for bridging gram-
marware and modelware would still, therefore, be needed to
obtain the model conforming to the target metamodel. Sec-
ondly, grammar reuse is not promoted, because each toolkit
uses its own grammar definition language. Moreover, each
toolkit only provides a limited number of GPL grammars
(i.e., Java and C in Stratego and TXL).

2.1.4 Model transformation languages

Similarly, model-to-model transformation languages could
also be used by first obtaining a simple intermediate model
(i.e., a syntax tree model) from the code by means of a ded-
icated parser. However, defining the transformation would
lead to an important problem: the inadequacy of the query
language. Most model transformation languages, such as
ATL or QVT, provide a variant of the OCL navigation
language [33] which allows model graphs to be traversed.
Although OCL-like expressions are appropriate for most
practical model-to-model transformations, they are not con-
venient for typical global-to-local transformations involved
in a model extraction from GPL code: long navigation

chains must be written using dot notation, as we illustrate
in Sect. 3. Integrating a more suitable query language into an
existing model transformation language would involve impor-
tant changes if a language supporting two different query
mechanisms were to be obtained. For instance, a plugin
mechanism could be implemented.

2.2 Our approach for model extraction

In the context of an Oracle Forms migration project, we con-
fronted model extraction from PL/SQL code. We, therefore,
considered the definition of a DSL to overcome the limita-
tions of the previously discussed approaches. This DSL had
to shorten the development time, make the maintenance eas-
ier and promote the reuse of existing grammars (e.g., ANTLR
and JavaCC grammars). To achieve these objectives, it was
necessary to raise the two key-design issues indicated in
Sect. 2: how can mappings between grammar elements and
metamodel elements be expressed in a simple and readable
way, and what notation is appropriate when retrieving scat-
tered information from syntax trees.

The DSL created, denominated as Gra2MoL, provides
constructs to write mappings at a high level of abstraction
in a declarative style similar to how mapping are expressed
in model-to-model transformation languages such as ATL
or RubyTL. With regard to the support of traversing syntax
trees, Gra2MoL provides a powerful query language for syn-
tax trees. This query language is introduced in the following
section and the DSL is described in detail in Sect. 4.

Figure 3 shows a first example of how Gra2MoL is used.
A Gra2MoL definition consists of a set of rules, each one
of which express the mapping between a grammar element
and a model element. The Gra2MoL definition shown in the
example is very simple, and only contains the rule named
example which transforms a methodDeclaration
grammar element (see Fig. 3a) into the Method metamodel
element (see Fig. 3c) according to the from and to parts of
the rule. The mapping part expresses how the information
of the model element is obtained from the information in
the syntax tree. In this example, the name attribute of the
Method model element is first initialized by accessing to
the Name grammar element of the methodDeclaration

Fig. 3 Simple example of a Gra2MoL mapping definition

123

www.manaraa.com

718 J. L. Cánovas Izquierdo, J. García Molina

Ta
bl

e
1

C
om

pa
ri

so
n

of
G

ra
2M

oL
w

ith
th

e
an

al
yz

ed
ap

pr
oa

ch
es

A
pp

ro
ac

h
Sy

nt
ax

tr
ee

na
vi

ga
tio

n
A

rt
if

ac
ts

to
be

cr
ea

te
d

Pr
e

pr
oc

es
si

ng
Po

st
pr

oc
es

si
ng

E
xi

st
in

g
gr

am
m

ar
re

us
e

Pr
ov

id
ed

gr
am

m
ar

re
us

e
Pu

rp
os

e

D
ed

ic
at

ed
pa

rs
er

(+
A

PI
)

G
PL

co
de

(+
pr

im
iti

ve
s)

M
M

T
P

N
on

e
N

on
e

Y
es

N
A

Sp
ec

ifi
c

m
od

el
ex

tr
ac

tio
n

M
oD

is
co

O
C

L
-l

ik
e

qu
er

y
la

ng
ua

ge
s

M
M

T
D

D
is

co
ve

re
r

(i
f

no
t

de
al

in
g

w
ith

Ja
va

or
X

M
L

)

m
2m

tr
an

sf
.:

M
M

I
→

M
M

T

Y
es

N
A

G
en

er
al

-p
ur

po
se

m
od

el
ex

tr
ac

tio
n

D
SL

de
fin

iti
on

to
ol

s
Po

or
su

pp
or

t
G

xt
M

M
T

m
2m

N
on

e
m

2m
tr

an
sf

.:
M

M
I
→

M
M

T

N
o

N
o

D
SL

cr
ea

tio
n

Pr
og

ra
m

tr
an

sf
.

St
ra

te
go

in
co

rp
or

at
es

a
qu

er
y

la
ng

ua
ge

[3
4]

M
M

T
T P

T
G

A
S
m

2m
N

on
e

E
xt

ra
ct

in
g

a
m

od
el

fr
om

a
pr

og
ra

m
co

nf
or

m
in

g
to

G
A

S

L
im

ite
d

(a
fe

w
gr

am
m

ar
s)

Y
es

Pr
og

ra
m

tr
an

sf
or

m
at

io
n

M
od

el
tr

an
sf

.
O

C
L

-l
ik

e
qu

er
y

la
ng

ua
ge

s
M

M
T

P
m

2m
N

on
e

N
on

e
Y

es
N

A
M

od
el

tr
an

sf
or

m
at

io
n

G
ra

2M
oL

St
ru

ct
ur

e-
sh

y
qu

er
y

la
ng

ua
ge

M
M

T
T

N
on

e
N

on
e

Y
es

N
A

G
en

er
al

-p
ur

po
se

m
od

el
ex

tr
ac

tio
n

N
A

no
t

ap
pl

ic
ab

le
,G

gr
am

m
ar

,
M

M
T

ta
rg

et
m

et
am

od
el

,
M

M
I

in
te

rm
ed

ia
te

m
et

am
od

el
,T

tr
an

sf
or

m
at

io
n

de
fin

iti
on

,
P

de
di

ca
te

d
pa

rs
er

,
T P

T
pr

og
ra

m
tr

an
sf

or
m

at
io

n
de

fin
iti

on
,G

xt
xT

ex
t/T

E
F

gr
am

m
ar

,m
2m

m
od

el
-t

o-
m

od
el

tr
an

sf
or

m
at

io
n

de
fin

iti
on

,G
A

S
ab

st
ra

ct
sy

nt
ax

gr
am

m
ar

,
D

di
sc

ov
er

er

grammar element received by the rule (variable mDec). The
params reference is then initialized using the q1 query,
which collects every param grammar element represent-
ing the paramteres of the method. Note that mappings are
specified explicitly and a specific query language is used to
traverse the syntax tree.

Table 1 contrasts Gra2MoL with the approaches analyzed.
The columns show the properties which are compared: the
ability to navigate the syntax tree; which artifacts must be
created; whether pre-processing (only required in MoDisco
when there is no discoverer for the GPL at hand) and/or post-
processing is necessary (it is normally required to eventu-
ally obtain a model conforming to the desired metamodel);
whether it is possible to reuse existing (e.g., grammars pro-
vided by ANTLR) and provided grammars (i.e., grammars
defined by the formalism used in the approach); the main pur-
pose of the approach. The artifacts to be created, and both
the pre-processing and post-processing tasks determine the
level of effort involved in each approach. For instance, we
note that bridging and program transformation approaches
require more complex tasks than Gra2MoL, such as writing
model-to-model transformations or defining a GPL grammar,
whereas in Gra2MoL, it is only necessary to create the trans-
formation definition and the target metamodel. Both model-
to-model and MoDisco approaches requires a great effort to
define the model transformation needed to obtain the target
model. In addition, MoDisco also requires implementing the
discoverer if the language involved is not Java or XML. With
regard to the creation of a dedicated parser, Gra2MoL turns
a hard-coding task into the writing of a grammar-to-model
transformation definition using a language specially tailored
to the extraction of models. As a consequence, development
time is reduced using Gra2MoL.

3 A query language for concrete syntax trees

As stated previously, transforming GPL into models involves
the intensive use of traversals through the syntax tree to
collect scattered information. A model extraction language
must, therefore, provide a powerful query language, which
facilitates the access to tree nodes outside the current con-
struct scope (i.e., a rule). Figure 4 illustrates the scatter-
ing problem for a simple example of extracting an ASTM
model element from a Delphi procedure. Abstract Syntax
Tree Metamodel (ASTM) [35] is a metamodel provided by
ADM to represent the source code of the software system
as ASTs. Since the scattered information problem appears
in both AST and CST, and obtaining a CST is easier than
obtaining an AST, Gra2MoL uses CSTs to represent the
source code. The CST shown in Fig. 4 corresponds with a
procedure declaration which includes a variable declaration
and an assignment statement initializing the declared vari-

123

www.manaraa.com

Extracting models from source code in software modernization 719

Fig. 4 Example of scattered information. The oval indicates the current scope and the dotted line indicates an identifier-based reference between
tree elements

able. The BinaryExpression model element represents
binary expressions, which are used to represent assignments
in ASTM. This model element has two properties to reg-
ister the right-hand side and left-hand side expressions of
the assignment (i.e., rightOperand and leftOperand
references, respectively) in addition to a property to specify
that the binary expression is an assignment (i.e., operator
reference). As can be observed, whereas all the informa-
tion needed to initialize the right-hand side attribute (the
expression grammar element of the assignment) are
inside the current scope (depicted as an oval), the informa-
tion needed to initialize the left-hand side attribute are outside
this scope, because themsg variable declaration is referenced
by an identifier. A query language might, therefore, help to
resolve this reference to the msg variable, by providing navi-
gation constructs for accessing the corresponding declaration
node and retrieving the variables’ properties.

We have created a structure-shy query language, inspired
by XPath [36], which allows a CST of the source code to be
navigated without the need to specify each navigation step.
The terms “structure-shy” is often used to refer to behaviour
specifications (e.g., queries) which are loosely bounded to
the data structures on which operations (e.g., syntax trees)
are applied.

To navigate the CST, the nodes are “typed” using the gram-
mar definition, and each tree node registers the name of the
grammar element as its type. Figure 5 illustrates the confor-
mance relationships between the CST and the grammar def-
inition, showing a CST for several Delphi procedures along

with the corresponding fragment of Delphi grammar. The
conformance rules are those commonly used to create a tree
of this kind:

– A non-terminal element corresponds to a tree node.
For instance, the decl_section non-terminal ele-
ment corresponds to the decl_section tree node in
Figure 5.

– A terminal element corresponds to a leaf. In Fig. 5, the
ID terminal corresponds to the ID leaf.

– A production rule is represented by a node hierarchy
whose parent corresponds to the non-terminal element
on the left-hand side of the rule, and a child for each
grammar element on the right-hand side by applying the
previous rules. In Fig. 5, the decl_section produc-
tion rule is represented by the hierarchy whose root is a
decl_section tree node.

A query consists of a sequence of query operations, each of
which includes four elements: an operator, a node type, a filter
expression (optional) and an access expression (optional).
Moreover, a query can be prefixed by a control statement.
The EBNF expression for a query operation is:

[control] { (’/’|’//’|’///’) (’#’)? nodeType
[filterExpression] [accessExpression] }

We have defined three operators to query and navigate over
CSTs: /, // and ///. The / operator returns the immedi-
ate children of a node and is similar to dot-notation (e.g., in

123

www.manaraa.com

720 J. L. Cánovas Izquierdo, J. García Molina

Fig. 5 CST for an excerpt of the Delphi grammar

OCL). The // and /// operators permit the traversal of all
the child nodes (direct and indirect), thus retrieving all nodes
of a given type. The /// operator differs slightly from the
// operator. Whereas the /// operator searches the syn-
tax tree in a recursive manner, the // operator only matches
the nodes whose depth is less than or equal to the depth of
the first matched node. The /// operator is, therefore, only
used to extract information from recursive grammar struc-
tures. These two operators allow us to ignore intermediate
superfluous nodes, thus making the query definition easier,
since it specifies what kind of node must be matched, but not
how to reach it, in a structure-shy manner. The mapCall
Function rule defined in Sect. 5.3 will illustrate the differ-
ence between both operators.

Since a query could return one or more subtrees, the #
operator is used to indicate the root node from which the
information needed can be accessed. This operator must be
associated with one and only one query operation of the
sequence of operations forming a query.

For instance, to extract all the Delphi variable dec-
larations defined in every procedure of the Delphi CST
shown in Fig. 5, the following query could be expressed
as /program//#varDeclaration. The same query
expressed in OCL is shown in Fig. 6. It is worth mentioning
how the clarity, legibility and conciseness are improved.

Query operations can also include a filter expression,
which is enclosed in curly brackets. A filter expression is
a logical expression which is applied to the leaves of the
node specified in a query operation. Each operand of a filter

Fig. 6 OCL query for extracting all the variable declarations of every
procedure of the Delphi CST shown in Fig. 5

expression is a boolean function which checks the properties
of a leaf, such as its value or whether it exists. Only those
nodes that satisfy the filter expression will be selected. For
example, the query /program//#varDeclaration/
designator{ID.exists} && ID.eq(’print’)}
will select those procedure grammar elements which include
an ID leaf whose value is print in the Delphi CST shown
in Fig. 5.

Finally, query operations can also include an access
expression enclosed in square brackets, which is used to
access to sibling nodes through indexing. For instance, the
query /program//procFuncDeclaration[0] will
select the first procedure grammar element of the CST in
Fig. 5, which is the print procedure.

The sequence of query operations that forms a query
expression can be prefixed by a control statement which is
surrounded by curly braces at the beginning of the query.

123

www.manaraa.com

Extracting models from source code in software modernization 721

(a)

(b)

Fig. 7 Control statement examples: a the use of such statement to
parameterize a query, b a filtering post-process

This statement allows the execution of a query to be man-
aged by performing either a pre-process (i.e., query para-
meterization) or a post-process (i.e., filtering). On the one
hand, the query parameterization allows a query to be exe-
cuted using external information such as each of the result
elements of a previous query. Figure 7a shows an example
of query parameterization which includes two queries. The
query q1 collects all the variable declarations of a Delphi
program and the query q2 then uses a for each iterator
which parameterizes the query to obtain all the assignment
statements which use such variables. Notice that the control
statement is in charge of launching the query q2 as many
times as result elements have q1, bounding each element in
the v variable.

On the other hand, control statements can also be used to
filter the result elements once a query has been executed.
Figure 7b shows a query which collects all the variable
declarations (i.e., varDeclaration elements) included
in a procedure and then the greatest control statement
then selects the variable whose Value leaf is the greatest.
Gra2MoL includes the control statements explained previ-
ously along with the while and least statements, which
allow executing a query as many times as the while condition
and selecting the leaf whose value is the least, respectively.
Moreover, the developer can define new statements using the
extension mechanism explained in Sect. 4.5.

4 The Gra2MoL language

Gra2MoL has been designed as a text-to-model transforma-
tion language. It is a rule-based language with rules whose
structure is similar to that provided in languages such as ATL
or RubyTL, with two important differences: (1) the source
element of a rule is a grammar element rather than a meta-
model element and (2) the navigation through the source
code is expressed by the query language presented for CSTs,
rather than an OCL-based-language.

An excerpt of the Gra2MoL abstract syntax, expressed as
a metamodel, is shown in Fig. 8a and the concrete syntax is
illustrated in Fig. 8b. As can be seen, a transformation defini-
tion consists of a set of transformation rules (Rule element).
Gra2MoL includes four types of rules: normal, copy, skip and
mixin, as illustrated in Fig. 9. Normal rules are used to express

(a)

(b)

Fig. 8 a Excerpt of the abstract syntax of Gra2MoL and b a skeleton
of its concrete syntax

Fig. 9 Gra2MoL rule types

a mapping between a grammar element and a metamodel
element, and they are therefore the rules normally required.
Copy rules are normal rules but they can transform a source
element more than once. On the other hand, skip and mixin
rules incorporate special behaviour into Gra2MoL transfor-
mations which is explained in Sect. 4.3. Since normal and
skip rules have the same syntactical structure, they are cate-
gorized as standard rules. A standard rule is composed of the
following four parts.

– The from part specifies a grammar non-terminal symbol,
and declares a variable that will be bound to a tree node
when the rule is applied. This variable can be used by any
expression within the rule. The from part can also include
query operations (i.e., a filter) to check the structure to

123

www.manaraa.com

722 J. L. Cánovas Izquierdo, J. García Molina

be satisfied by the nodes whose type is the non-terminal
symbol.

– The to part specifies the target element metaclass.
– The queries part contains a set of query expressions

which allow information to be retrieved from the CST.
The result of these queries will be used in the assignments
of the mappings part.

– Finally, the mappings part contains a set of bindings to
assign a value to the properties of the target element. It is
also possible to use control or imperative structures, such
as if statements or new statement, to create instances
of metaclases, as occurs in Sect. 5.

4.1 Bindings and rule conformance

To express the relationship between a source grammar ele-
ment and a target metamodel element, Gra2MoL incorpo-
rates the binding construct used in ATL and RubyTL. The
syntax and semantics of this construct have been slightly
altered to be incorporated into Gra2MoL. A binding is writ-
ten as an assignment using the operator =. The left-hand side
must be a property of the target element metaclass. The right-
hand side can be the variable specified in the from part of the
rule, a literal value or a query identifier.

The rule evaluation is determined by a binding-based
scheduling mechanism inspired by the mechanisms of ATL
and RubyTL. The definitions of rule conformance and well-
formed transformation stated for RubyTL in ref. [13] are
applicable to Gra2MoL, with simple changes.

4.1.1 Rule conformance

A rule conforms to a binding if the type in its from part
conforms to the type in the right-hand side of the binding and
the type in its to part conforms to the type in the left-hand
side of the binding, where the type conformance is defined
as follows.

4.1.2 Type conformance

A metaclass Am conforms to a metaclass Bm if they are the
same or Am is a subtype of Bm, whereas a node type An

conforms to a node type Bn if they are the same.

4.1.3 Well-formed transformation definition

A transformation definition is well-formed if for each binding
involving a non-primitive type as left-hand side type, there
exist one or more conforming rules but there is one and only
one applicable rule. This means that if two or more conform-
ing rules exist, their filter conditions must be exclusive, since
only one of them can be applied.

The application of a binding, therefore, implies that a
conforming rule exists which transforms the type of the
right-hand side of the binding into the type of the left-hand
side of the binding.

4.2 Rule evaluation

Every Gra2MoL transformation definition must have an entry
point to start the transformation execution. The entry point is
the first normal rule of the transformation definition and its
mappings are in charge of starting the transformation execu-
tion. In a Gra2MoL transformation definition, only standard
rules (i.e., normal, copy and skip rules) are eligible to be
applied by a mapping, whereas mixin rules are applied when
the referring rule is executed, as we explain in the following
section.

When a rule is applied to a node, the filter located in the
from part is first checked and then, if the node satisfies the
filter, the rule will be executed. If it is a standard rule, an
instance of the target metaclass is created. Finally, the rule
bindings are executed regardless of the rule type. In the appli-
cation of a binding, three situations may arise according to
the nature of the right-hand side.

– If it is a literal value, the value is directly assigned to the
property of the left-hand side.

– If it is a query identifier, the query is executed and a rule
conforming to this binding is looked up in the transfor-
mation definition. Whenever a conforming rule is found,
it is applied using the element of the right-hand side of
the binding as the source grammar element.

– If it is an expression, it is evaluated and two situations
may arise, depending on whether the result is a node
whose type corresponds to a terminal (a leaf) or a non-
terminal symbol. If it is a leaf, the result is a primitive
type and is directly assigned; otherwise, a rule to resolve
the binding is looked up and executed, as was explained
in the previous case.

4.3 Skip and mixin rules

Transforming the arithmetic and logical expressions of the
source code requires Gra2MoL to provide a special mecha-
nism to deal with the grammar structures usually involved.
The use of expressions in a programming language normally
causes the addition of a number of grammar rules which
creates a new parse tree. These grammar rules are normally
defined in a chained manner in which each rule adds a new
operator to the expression (see Fig. 10a). Using normal rules,
the mappings between the grammar and metamodel elements
are usually direct, for instance, an OR expression is nor-
mally mapped into a metamodel element which represents

123

www.manaraa.com

Extracting models from source code in software modernization 723

(a) (b)

(c)

Fig. 10 a Grammar rules to parse both AND and OR expressions and
b the corresponding syntax tree for the expression expr1 And
expr2. c Skip rule for the expression grammar element

OR binary expressions. However, in some cases, parsing
a grammar element does not mean creating a model ele-
ment. For instance, given the grammar in Fig. 10a, if the
expression grammar element does not contain the operator
(i.e., the OR token in the example, see Fig. 10b), parsing
an expression grammar element will not imply creat-
ing a metamodel element which represents an OR binary
expression.

Gra2MoL, therefore, provides a special type of rule, called
skip rules, which are mainly aimed at extracting models from
expressions of programming languages. Skips rules allow the
creation of the instance of the metaclass specified in the to
part of the rule to be delayed until some computations to
grammar elements have been performed, for instance, the
existence of the OR token in the example. Depending on the
result of such computations, the execution can be transferred
to the apropriate rule using the skip operator in the map-
pings part. Figure 10c shows the skip rule dealing with those
expression grammar elements which not contain the OR
token, tranferring the execution to the rule dealing with the
expressionAnd token (i.e., the following grammar rule
dealing with expressions in the example). Note that skip rules
can also be defined in a chained manner, as we illustrate in
Sect. 5.

Like other model transformation languages such as
RubyTL, Gra2MoL includes a type of rule, called mixin
rules, which aims to provide a mechanism for reusing rules.
The queries and mappings which are common to several rules
can be extracted into a mixin rule. Both normal and skip rules
can then import mixin rules to add the queries and mappings
they define. A mixin rule has the same syntactical structure
as a normal rule except that it does not have to part. A nor-
mal or skip rule can import a mixin rule only if the from
part of both rules specifies the same grammar element. To

Fig. 11 Mixin rule use

express the importation of a mixin rule, the mixin part has
been added to the rule structure described above. Figure 11
shows a mixin rule called myMixinRule and a normal rule
called myNormalRule using it. The rule myMixinRule
will be executed just before executing the myNormalRule.
Note that the from part of both rules is the same and the dec
variable used in the query q1 of the mixin rule is bounded to
the declaration grammar element received by the normal rule.

4.4 Implementation

The execution of a Gra2MoL transformation is split into
three steps. The first step is in charge of building the CST
of the source code, the second step obtains the abstract syn-
tax model from the Gra2MoL textual definition, and finally,
the third one interprets and executes the transformation def-
inition.

Current implementation of Gra2MoL uses ANTLR gram-
mar definitions. These definitions can be enriched with
actions to create the CST. However, we are interested in using
ANTLR grammar definitions without attached actions for
two reasons: (1) to alleviate the grammar developer from the
burden of creating the CST programmatically and (2) to pro-
mote grammar reuse. We have, therefore, defined an enrich-
ment process which automatically adds the actions needed
to build the CST to the grammar rules. This process also
supports the use of island grammars, which is a mechanism
applied when the main language contains one or more sub-
languages (e.g., the Javadoc language in Java). In this case,
the developer must modify the grammar rule of the main
language which links to the island grammar to configure
the enrichment process (more information on how to tune
the grammar to support island grammars is provided in the
Gra2MoL website [18]).

Gra2MoL internally uses a metamodel to generically rep-
resent CSTs of the parsed source code. This metamodel is
shown in Fig. 12. There are three kinds of elements in a
CST model, namely Leaf, Node and Tree. Leaf repre-
sents a tree node which corresponds to a recognized terminal
symbol. Node represents a tree node which corresponds to
a recognized non-terminal symbol and is composed of one
or more children nodes, either of the Leaf or Node type.

123

www.manaraa.com

724 J. L. Cánovas Izquierdo, J. García Molina

Fig. 12 CST metamodel

The type attribute identifies the grammar symbol whose
recognition has yielded the tree node creation (this is needed
to navigate through the CST, as was explained in Sect. 3).
Finally, Tree represents the root node of the tree. The cre-
ation of models conforming to this metamodel is driven by
the conformance rules explained in Sect. 3.

The execution process of a Gra2MoL transformation is
shown in Fig. 13. Figure reffig:10a shows the pre-processing
step T to enrich the ANTLR grammar while Fig. 13b shows
the step to obtain the abstract syntax model from the tex-
tual definition. The latter step is actually a kind of boot-
strap process (i.e., Gra2MoL is used to extract a model
from the Gra2MoL transformation definition) which has four
inputs: the Gra2MoL concrete syntax definition, which is
defined by the grammar of the language (GGra2MoL); the
Gra2MoL abstract syntax (M MGra2MoL); the transformation
definition (G2M M) and the text input which conforms to
the concrete syntax (i.e., the transformation definition of the
main process). The result of the bootstrap process is the
abstract syntax model (MGra2MoL), which is later used by
the Gra2MoL Engine. The bootstrap process allowed us to
implement the DSL without the need to use other DSL defi-
nition tools, thus illustrating that our approach might also be
used to implement textual DSLs.

Figure 13c shows the Gra2MoL engine, which receives
the abstract syntax model, the resulting enriched parser from
the pre-processing step and the source code to be trans-
formed. The artifacts generated by the Gra2MoL engine are
the model conforming to the target metamodel and a trace
model containing the information concerning which target
elements have been created, from which source grammar
elements and by which rule.

Note that Fig. 13c is same as Fig. 1, except that a parser
is an input to the Gra2MoL engine to build the CST model.
This parser is generated from the grammar (Ge) enriched
with actions intended to create CST models conforming to
the metamodel M MCST shown in Fig. 12. Since the CST
can become huge when extracting a large number of source
files, the Gra2MoL transformation process can be config-
ured to store this tree into a model respositoy (CDO [37]
and Morsa [39] model repositories are currently supported),
which allows big models to be managed efficiently, thus
improving performance (more information about how to set
up the process is provided in the Gra2MoL website [18]).

Gra2MoL is distributed as a plugin for the Eclipse IDE
which can be downloaded from the Gra2MoL website [18].
The plugin incorporates an editor to manage transforma-
tion definitions, which include some assistance mechanisms
such as syntax highlighting, auto-completion or code fold-
ing. Figure 14 shows a screenshot of the Gra2Mol editor.
A launcher to execute transformations from Eclipse is also
provided.

4.5 Extension mechanism

Gra2MoL offers extension points to extend some lan-
guage capabilities. There are two main extension points: the

(a)

(b)

(c)(c)

Fig. 13 Gra2MoL transformation process

123

www.manaraa.com

Extracting models from source code in software modernization 725

Fig. 14 Gra2MoL Eclipse plugin

Fig. 15 Extending the Gra2MoL language. Classes composing the extension framework

mapping operators (i.e., operators to be used in the right-hand
side of a binding) and the query language. Such extensions
can be implemented in and incorporated into the transforma-
tion engine using the extension framework provided, which
is shown in Fig. 15. Since Gra2MoL has been developed

in Java, implementing a new extension is achieved by class
inheritance.

When extending Gra2MoL with a new mapping opera-
tor, a subclass of the MappingExtension abstract class
(located in left-hand part of Fig. 15) must be created. This

123

www.manaraa.com

726 J. L. Cánovas Izquierdo, J. García Molina

(a)

(b)

Fig. 16 New mapping operator example. a The use of the ext key-
word to call to the new mapping operator. b The implementation of the
mapping operator

subclass must implement the abstract method execute,
which performs the specific behavior of this operator, and
optionally incorporates a method called getKeywords to
specify the keywords which identify the new operator (if it is
not provided, the keyword must be established by a prop-
erty file). The MappingExtension abstract class also
includes several methods to help the developer to build the
result of the mapping operator, which can be a string value
(returnString method), a rule (returnRule method)
or a node (returnNode method). Moreover, Mapping
Extension inherits from the common root of the hierarchy,
the Extension Point abstract class, which allows the
parameters of the operator (getParam method) or the
queries included in the rule (getQueries method) to be
accessed. Gra2MoL supports calls to new mapping opera-
tors using the ext keyword in the mappings part of a rule.
A binding which uses a new operator will, thus, use the
ext keyword followed by the keyword of the new opera-
tor and optionally a list of parameters. For instance, Fig. 16a
shows a rule which uses the extension mechanism in the
mappings part and calls to toUpperCase operator, which
receives the VALUE string and transforms it to upper case.
Figure 16b shows the implementation of the class inheriting
from MappingExtension.

The query language can also be extended to incorporate
new query control statements and operators for filter expres-
sions. They can be added to the language by extending the
QueryControlExtension and QueryOperation
Extension abstract classes shown in the right-hand part of
the Fig. 15, respectively. Both abstract classes inherit from
QueryExtension, which allows accessing to the context
of the queries part (i.e., accessing to the results of other
queries), and in turns, inherits from ExtensionPoint.

(a)

(b)

Fig. 17 New query control statement example. a The query using the
query control statement. b An excerpt of the implementation of such
statement

In the same way as the mapping operators, the query
language extensions can also incorporate a method called
getKeywords to specify the keywords which identify
them.

With regard to new query control statements, the subclass
inheriting from the QueryControlExtension abstract
class must implement both the preprocess and the
postprocess methods, which allow developers to man-
age the query execution. Thepreprocessmethod is called
before the query execution whereas the postprocess
method is called after the query execution and receives the
list of result nodes. The new query control operators can
be called using the ext keyword in the control part of a
query. For instance, Fig. 17a shows a query control state-
ment called removeDuplicateswhich remove variables
whose VALUE leaf is the same once the query has been exe-
cuted. Figure 17b shows an excerpt of the implementation
of the corresponding class. Note that it is only necessary to
implement the postprocess method.

On the other hand, when adding new query operators, the
subclass inheriting from QueryOperationExtension
must implement the perform method. This method is
applied to the leaf of the node to which the operator is
applied and returns a boolean value indicating whether the
node satisfies the operator. For instance, Fig. 18a shows a
query using an operator called isSurroundedBy which
checks whether the VALUE leaf of the node is surrounded by
a character given as parameter. Figure 18b shows an excerpt
of the corresponding class implementing the query operator.

5 Example

Delphi is a programming language which is a dialect of
Object Pascal. The language has been extensively used to
develop business applications, especially in RAD solutions.
However, there are a number of applications developed in old
versions of Delphi which require adaption or modernization

123

www.manaraa.com

Extracting models from source code in software modernization 727

(a)

(b)

Fig. 18 A new query operator example. a The query using the new
query operator. b An excerpt of the implementation of such operator

(e.g., supporting new language versions or migrating to other
platforms). Gra2MoL has been used within the context of a
project to migrate Delphi applications to Java platform, to
extract models from Delphi source code. This project uses
the ASTM to represent the source code of the software sys-
tem. Once the ASTM models are obtained, MDD techniques
(i.e., model-to-model and model-to-text transformations) are
applied to obtain the migrated system. In this section, we
describe how the Gra2MoL transformation definition was
implemented, since the rest of the migration process is not
within the scope of this article. In particular, this example
covers the transformation of a subset of Delphi statements.

Figures 19 and 20, respectively, show the parts of the Del-
phi grammar and the ASTM metamodel considered in this
example. Both the grammar and the metamodel are explained
as follows, and we then go on to describe the Gra2MoL trans-
formation rules for this example.

5.1 The Delphi grammar

The grammar includes the rules needed to parse a subset of
Delphi statements. Note that some of them have been simpli-
fied or reduced for the sake of simplicity. It therefore includes
the block grammar rule representing Delphi blocks com-
posed of an optional declaration section (declSection
grammar rule) and a set of statements (compoundStmt
grammar rule), which can be surrounded (i.e., including
before and/or after) by export statements (exportsStmt
grammar rule). The declSection grammar rule derives
into avarDeclaration andprocFuncDeclaration
rules, which allows a variable and either a procedure or a
function to be declared. Although these declaration grammar
rules are used in the example to illustrate implicit references
in the code, they have been greatly simplified for the sake of
conciseness. The compoundStmt grammar rule refers to
thestmtList rule, which in turn refers to thestatement
grammar rule. The statements considered in this example are

Fig. 19 An excerpt of the Delphi grammar used in the example

assignments and function calls (the two alternatives of the
statement grammar rule, respectively).

The grammar also includes a subset of the grammar rules
needed to parse expressions, which will be used to illus-
trate the use of skip rules. The expression grammar rule
allows defining optionally an OR logical expression where

123

www.manaraa.com

728 J. L. Cánovas Izquierdo, J. García Molina

Fig. 20 An excerpt of the ASTM metamodel used in the example

each operand is represented by an expressionAnd gram-
mar rule, which in turn allows an AND logical expression to
be defined. Each operand of an expressionAnd gram-
mar rule is represented by a simple Expression gram-
mar rule, which uses optionally a logical operator (relOp
grammar rule). The operands of simple Expression are
represented by expressionPart, which can derive into
a number (NUMBER token), a string value (STRING token)
or an element reference (designator alternative).

5.2 The ASTM metamodel

The ASTM metamodel excerpt shown in Fig. 20 includes
the elements used to represent the subset of statements
and expressions considered in the grammar. In ASTM,
the Statement hierarchy represents the statements of a
programming language. The figure includes the Block
Statement metaclass, which represents blocks of state-
ments (substatements reference) and theExpression
Statementmetaclass, which represents an expression
statement (expression reference) and allows assign-
ments, references, literals and function calls to be repre-
sented. Note that ASTM models are more complex than
AST models, because they incorporate metaclasses which
allow cross-references between elements to be represented
(i.e., NameReference hierarchy explained below). Thus,
ASTM models are actually abstract syntax graphs.

In ASTM, the expressions of a programming language are
represented by means of the elements of the Expression
hierarchy. Figure 20 includes the BinaryExpression
metaclass with which to represent both assignment and log-
ical expressions; the NameReference metaclass, which
allows elements referring to other abstract syntax tree ele-
ments to be represented (e.g., the use of a variable and its
declaration or the call to a function and its declaration);
the Literal metaclass to represent literal values; the
FunctionCallExpression metaclass to represent
function calls. The BinaryExpression metaclass refers
to the right-hand and left-hand side of the binary expres-
sion (rightOperand and leftOperand references,
respectively) along with the operator of such an expres-
sion (operator reference), which is represented by the
metaclasses of theBinaryOperatorhierarchy. TheName
Reference metaclass refers to the Definition
Object (refersTo reference), which is the root meta-
class of every definition or declaration element in ASTM
(e.g., VariableDeclaration and Function
Declaration metaclasses). The Identifier Refe
rence is subclass of NameReference and allows sim-
ple references to be represented (e.g., the name of either a
variable or a function). The Literal metaclass includes
the value attribute for storing the literal value and has
IntegerLiteral and StringLiteral as subclasses
of representing integer and string values, respectively. Finally,
the FunctionCallExpression metaclass refers to the

123

www.manaraa.com

Extracting models from source code in software modernization 729

declaration of the called function (calledFunction
reference) and the parameters (actualParams refer-
ence), which are actually represented by the metaclass
ActualParameterExpression referring to the expres-
sion used as a parameter.

5.3 Transformation rules dealing with statements

The Gra2MoL transformation definition developed consists
of 38 rules but owing to lack of space, in this section, we only
present the rules involved in the example (the complete def-
inition of the transformation can be downloaded from [18]).
We first describe the rules used to transform the statements
considered in this example and then the rules dealing with
expressions, as they will use the skip rule type.

Figure 21 shows the set of rules used to transform blocks
of statements. The mapBlock rule starts the transfor-
mation execution. This rule has only one binding whose
right-hand side is a query identifier (stats) and whose
left-hand side refers to the subStatements reference
of the BlockStatement metaclass. The query is, there-
fore, executed and the rules conforming the binding are then
looked up and executed for each result element. In this case,
mapCallFunction and mapAssignment rules con-
form to the binding, but the from filter allows the selection of
only one result element for each query, depending on the exis-
tence of the := token in the statement grammar element.

ThemapAssignment rule defines the mapping between
the statement grammar element containing the := token
and the ExpressionStatement metaclass. This rule

therefore creates an instance of the Expression
Statement metaclass and its queries obtain both the
left-hand side and right-hand side elements of the assign-
ment (lElem and rElem queries, respectively). The rule
includes a set of mappings to initialize the expression
reference of the instance created. First, a new instance
of BinaryExpression is created and assigned to this
reference. Then, the operator reference is established by
creating an Assign metaclass instance, which specifies
that the BinaryExpression created by the rule is an
assignment expression. The last two mappings are bind-
ings whose right-hand side is a query identifier (lElem
and rElem, respectively) and left-hand side is a reference
(leftOperand andrightOperand, respectively). Note
that the last three mappings use the dot notation in the left-
hand part of the binding to access the properties of the model
element referred by the expression property. The map-
ping using the lElem query identifier will apply the rule
locateFrom Designator, since the query obtains the
designator grammar element from the left-hand side of
the assignment code statement and it is the only one that con-
forms to the binding. On the other hand, the rElem query
obtains the expression grammar element of the assign-
ment code statement and the mapping result will, therefore,
apply the rule that deals with expressions, which is explained
in Sect. 5.4.

The locateFromDesignator rule defines the map-
ping between the designator grammar element and
the IdentifierReference metaclass. The rule there-
fore creates an instance of the IdentifierReference

Fig. 21 Transformation rules dealing with statements

123

www.manaraa.com

730 J. L. Cánovas Izquierdo, J. García Molina

metaclass and its purpose is to locate the referred ele-
ment through the source code. The queries of this rule
thus traverse the CST to locate either the variable or
the referred function/procedure declaration (varloc and
metloc query identifiers, respectively). These queries use
the // operator to find the designator grammar element,
which specifies the identifier of either the variable or the
function/procedure, facilitating the definition of the traver-
sal of the syntax tree. Note that such a reference is actu-
ally a cross-reference between elements of the syntax tree
and how easy is to resolve it using the Gra2MoL query lan-
guage. It is also important to note that the reference for-
mat could involve defining some query extension (e.g., if
the reference involves dealing with particular scopes). In
the mappings section, an if statement checks whether either
a variable or function/procedure has been found (i.e., they
have result elements) and establishes the refersTo refer-
ence. If a function/procedure has been found, the binding
involving the metloc query identifier will be applied and
the mapProc FuncDeclaration rule will then be exe-
cuted, which will initialize the refersTo reference to the
instance of the FunctionDeclaration metaclass. On
the other hand, if a variable has been found, the binding
involving the varloc query identifier will be applied, and
then, the mapVariableDeclaration rule will be exe-
cuted, which will initialize the refersTo reference to the
instance of the VariableDeclaration metaclass cre-
ated by this rule. Since the example only covers the transfor-
mation rules dealing with some statements, these two rules
are not shown in their entirely.

The mapCallFunction rule defines the mapping
between the statement grammar element, which does not
contain the := token, and the ExpressionStatement
metaclass. Like the mapAssignment rule, this rule also
creates an instance of ExpressionStatement meta-
class, but the expression property must refer to an
instance of FunctionCallExpression. The queries
contained in this rule obtain the name of the called function/
procedure (dElem query) and the set of parameters (eElem
query). The last query illustrates the meaning of the ///
operator. Since the param grammar rule is defined recur-
sively, the /// allows the CST to be traversed to retrieve
every param node. This rule includes a set of mappings to
initialize the expression reference of the metaclass cre-
ated. First, a new instance ofFunctionCallExpression
is created and assigned to this reference. The next mapping is
a binding whose right-hand side is a query identifier (dElem)
and left-hand side is the calledFuncion reference. The
query is applied and a rule conforming this binding will be
executed. In this case, the only rule that can be executed is
the locateFromDesignator rule explained above. The
last mapping of the mapCallFunction is also a binding
whose right-hand side is a query identifier (eElem) and left-

hand side is the actualParams reference. In this case,
once the query is executed, the mapParameter rule is
applied for each query result.

The mapParameter rule defines the mapping between
the expression grammar element and the Actual
ParameterExpression metaclass. The rule therefore
creates an instance of Actual ParameterExpression
metaclass and contains only one binding whose right-hand
side is the grammar element received by the rule and the left-
hand side is the value reference. Since the application of this
binding will execute the rules that deal with expressions, it
is explained below.

5.4 Transformation rules dealing with expressions

When defining Gra2MoL transformation rules for expres-
sion grammar rules, the pattern to be used is the following: for
each expression grammar rule, two transformation rules must
be added. The former is a skip rule dealing with the gram-
mar element that does not contain the operator token and the
latter is a normal rule dealing with the grammar element that
contains it. The new skip rule must transfer the execution to
the next grammar element dealing with expressions, whereas
the new normal rule must transform the current grammar ele-
ment. For instance, skipOr and mapOr are the rules which
deal with the expression grammar element (see Fig. 22).
The skipOr rule is a skip rule which transfers the trans-
formation execution to the expressionAnd grammar ele-
ment whether the expression grammar element does not
have the OR token. On the other hand, the mapOr rule is a
normal rule which deals with the expression grammar
element containing the OR token.

Thus, when an expression grammar element is being eval-
uated (e.g., the last bindings of mapAssignments and
mapParameter), either the skipOr or the mapOr could
be executed depending on the existence of the OR token. If it
does not exist, the skipOr rule is executed so that the next
query locates the next grammar element dealing with expres-
sions (i.e., the expressionAnd element) and executes the
skip next statement, which transfers the execution to the
rule whose from part conforms to expressionAnd and
whose to part conforms to Expression metaclass. In this
case, the candidate rules are skipAnd and mapAnd. On
the other hand, if the OR token exists, the mapOr rule is
executed so that an instance of the BinaryExpression
metaclass is created and both its operator (operator refer-
ence) and operands (leftOperand and rightOperand
references) are initialized, which causes those rules conform-
ing to this binding to be triggered. In this case, since the type
of the queries are expressionAnd grammar elements, the
candidate rules also areskipAnd andmapAnd. For the sake
of simplicity, the rule only deals with expressions containing
two operands.

123

www.manaraa.com

Extracting models from source code in software modernization 731

Fig. 22 Transformation rules for dealing with expressions in the Delphi example

Fig. 23 Delphi code example

Notice that the pattern is repeated in the skipAnd
and mapAnd rules for the expressionAnd grammar
element as well as in the skipRelOp and mapRelOp
rules for the simple Expression grammar element.
The mapNumber, mapString and skipDesignator
rules are the end of the expression transformation. The
mapNumber and mapString rules create an Integer
Literal or StringLiteral that stores the value of
the expression element in the value attribute. On the other
hand, theskipDesignator rule transfers the execution to
the rule which deals with the designator grammar ele-
ment (i.e., the locateFromDesignator rule described
before). Note that this use of skip rules differs slightly from
the use explained previously. In this case, it is used to transfer
the execution to the rule which is in charge of transforming
a particular grammar element (i.e., designator grammar
element in this case), thus allowing developers to control the
transformation execution flow.

Figure 23 shows a Delphi code snippet and Fig. 24 shows
the model created by means of applying the transformation

rules described previously. Note that the transformation starts
dealing with the boxed source code.

6 Conclusions and future work

The description about Gra2MoL in this paper has been
focused on its usefulness in extracting models from GPL
code. However, this DSL is actually a text-to-model trans-
formation which can be used to extract models from any
code conforming to a grammar. To the best of our knowl-
edge, Gra2MoL is the first approach for the definition of a
text-to-model transformation language.

Figure 25 shows the main Gra2MoL features according to
the feature diagram proposed in [38] as a framework for the
classification of model transformation languages. Gra2MoL
is a unidirectional language, whose source domain is the
grammar realm and whose target domain is the MDE realm.
A Gra2MoL transformation definition consists of rules which
transform grammar elements into model elements by manip-
ulating the CST of the source code. Rules are resolved implic-
itily and in a deterministic manner, although the developer
can alter the rule scheduling using skip rules. The language
also incorporates mixin rules as a reuse mechanism, in addi-
tion to copy rules which allow a source element to be trans-
formed more than once. With regard to the trace information,
the Gra2MoL engine creates a separate trace model automat-
ically. Moreover, a powerful language has been defined to
navigate and query a CST in a structure-shy manner. The lan-
guage has been applied a several case studies (downloadable

123

www.manaraa.com

732 J. L. Cánovas Izquierdo, J. García Molina

Fig. 24 ASTM model obtained
by means of applying the
transformation rules to the
Delphi code shown in Fig. 23

Fig. 25 Feature diagram showing the features of Gra2MoL according to [38]. Gra2MoL specific features are depicted as filled boxes

from [18]), thus allowing us to identify new functionalities
to improve its expressiveness, usability and performance.

With regard to future work, we are working on scalability
issues such as analyzing the performance impact of manag-
ing a CST either in memory or in a model repository. We are
additionally studying the incorporation of a phasing mecha-
nism to allow transformation definitions to be organized and
modularity to be promoted. We also plan to incorporate a

trace query mechanism to improve the transformation con-
trol. Finally, we are working on supporting another parser
generators to increase the number of existing grammars that
can be reused.

Acknowledgments This work has been supported by the Spanish
government (TIN2009-11555 project) and the Fundación Séneca of the
Regional Government of Murcia (15389/PI/10 grant).

123

www.manaraa.com

Extracting models from source code in software modernization 733

References

1. Heckel, R., Correia, R., Matos, C., El-Ramly, M., Koutsoukos, G.,
Andrade, L.: Architectural transformations: from legacy to three-
tier and services. In: Mens, T., Demeyer, S. (eds.) Software Evolu-
tion, p. 170. Springer, Heidelberg (2008)

2. Cánovas Izquierdo, J.L., García Molina, J.: An architecture-driven
modernization tool for calculating metrics. IEEE Softw. 27, 37–43
(2010)

3. Andrade, L.F., Gouveia, J., Antunes, M., El-Ramly, M., Kout-
soukos, G.: Forms2Net - migrating oracle forms to Microsoft. NET.
In: Generative and Transformational Techniques in Software Engi-
neering, pp. 261–277 (2006)

4. Reus, T., Geers, H., Deursen, A.: Harvesting software sys-
tems for MDA-based reengineering. In: European Conference on
Model Driven Architecture: Foundations and Applications, LNCS,
vol. 4066, pp. 213–225 (2006)

5. ADM initiative website. http://adm.omg.org. Accessed 6 March
2012

6. ADM Task Force: Architecture-driven modernization scenarios.
OMG, USA (2006)

7. Kurtev, I., Bézivin, J., Aksit, M.: Technological spaces: An initial
appraisal. In: Cooperative Information Systems, DOA’2002 Fed-
erated Conferences, Industrial track (2002)

8. Xtext project. http://www.eclipse.org/Xtext. Accessed 6 March
2012

9. EMFText project. http://emftext.org. Accessed 6 March 2012
10. Czarnecki, K., Helsen, S.: Feature-based survey of model transfor-

mation approaches. IBM Syst. 45(3), 621–646 (2006)
11. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: A model trans-

formation tool. Sci. Comp. Program. 72(1–2), 31–39 (2008)
12. Heaton, L.: Meta Object Facility (MOF) Query/View/ Transforma-

tion Specification. OMG, New York (2005)
13. Sánchez Cuadrado, J., García Molina, J., Mernárguez Tortosa, M.:

RubyTL: A practical, extensible transformation language. In: Euro-
pean Conference on Model Driven Architecture: Foundations and
Applications, LNCS, vol. 4066, pp. 158–172 (2006)

14. Mofscript project. http://www.eclipse.org/gmt/mofscript.
Accessed 6 March 2012

15. Xpand website. http://wiki.eclipse.org/Xpand. Accessed 6 March
2012

16. Cánovas Izquierdo, J.L., Sánchez Cuadrado, J., García Molina, J.:
Gra2MoL: A domain specific transformation language for bridging
grammarware to modelware in software modernization. In: Work-
shop Model Driven Software Evolution (2008)

17. Cánovas Izquierdo, J.L., García Molina, J.: A domain specific lan-
guage for extracting models in software modernization. In: Euro-
pean Conference on Model Driven Architecture Foundations and
Applications, LNCS, vol. 5562, pp. 82–97 (2009)

18. Gra2MoL website. http://modelum.es/gra2mol. Accessed 6 March
2012

19. Wijngaarden, J., Visser, E.: Program transformation mechanics:
a classification of mechanisms for program transformation with
a survey of existing transformation systems. Tech. Rep. UU-CS-
2003-048. The Department of Information and Computing Sci-
ences, Utrecht University, The Netherlands (2003)

20. JDT Eclipse project. http://www.eclipse.org/jdt. Accessed 6 March
2012

21. MoDisco. http://www.eclipse.org/gmt/modisco. Accessed 6
March 2012

22. GMT Eclipse project. http://www.eclipse.org/gmt. Accessed
6 March 2012

23. KDM metamodel specification. http://www.omg.org/spec/KDM.
Accessed 6 March 2012

24. Fowler, M.: Domain-Specific Languages. Addison Wesley, USA
(2011)

25. Scheidgen, M.: Textual Modelling Embedded into Graphical Mod-
elling. In: European Conference on Model Driven Architecture
Foundations and Applications, LNCS, vol. 4530, pp. 153–168
(2008)

26. Jouault, F., Bézivin, J., Kurtev, I.: TCS: a dsl for the specification
of textual concrete syntaxes in model engineering. In: Generative
Programming and Component, Engineering, pp. 249–254 (2006)

27. JAMOPP project. http://jamopp.inf.tu-dresden.de. Accessed 6
March 2012

28. Wimmer M., Kramler, G.: Bridging grammarware and modelware.
In: Satellite Events at the MoDELS 2005 Conference, pp. 159–168
(2006)

29. Kunert, A.: Semi-automatic generation of metamodels and models
from grammars and programs. In: Fifth International Workshop on
Graph Transformation and Visual Modeling Techniques. E. N. in
Theorical Computer Science, vol. 211, pp. 111–119 (2008)

30. Prinz, A., Scheidgen, M., Tveit, M.S.: A model-based standard
for SDL. In: International SDL Forum Conference on Design for
Dependable Systems, pp. 1–18 (2007)

31. Stratego/XT. http://strategoxt.org. Accessed 6 March 2012
32. TXL. http://www.txl.ca. Accessed 6 March 2012
33. OCL constraint language. OMG (2006)
34. Wijngaarden, J.: Code Generation from a Domain Specific Lan-

guage: M.Sc. Thesis (2003)
35. ASTM metamodel specification. http://www.omg.org/spec/ASTM

Accessed 6 March 2012
36. Xpath. http://www.w3.org/TR/xpath. Accessed 6 March 2012
37. CDO project. http://www.eclipse.org/cdo. Accessed 6 March 2012
38. Czarnecki, K., Helsen, S.: Classification of model transformation

approaches. In: Proceedings of the 2nd OOPSLA Workshop on
Generative Technique in the Context of the Model Driven, Archi-
tecture (2003)

39. Espinazo-Pagán, J., Sánchez Cuadrado, J., García Molina, J.:
Morsa: A scalable approach for persisting and accessing large mod-
els. In: International Conference on Model Driven Engineering
Languages and Systems, pp. 77–92 (2011)

Author Biographies

Javier Luis Cánovas Izquierdo
received a Ph.D. in computer
science from the University of
Murcia, Spain in 2010 and a
M.Sc. from the University of
Murcia in 2006. Since Octo-
ber 2011, he is a post-doctoral
researcher in the AtlanMod
team at INRIA Rennes Bretagne
Atlantique. His research interests
are domain-specific languages,
model-driven development and
model-driven modernization.

123

http://adm.omg.org
http://www.eclipse.org/Xtext
http://emftext.org
http://www.eclipse.org/gmt/mofscript
http://wiki.eclipse.org/Xpand
http://modelum.es/gra2mol
http://www.eclipse.org/jdt
http://www.eclipse.org/gmt/modisco
http://www.eclipse.org/gmt
http://www.omg.org/spec/KDM
http://jamopp.inf.tu-dresden.de
http://strategoxt.org
http://www.txl.ca
http://www.omg.org/spec/ASTM
http://www.w3.org/TR/xpath
http://www.eclipse.org/cdo

www.manaraa.com

734 J. L. Cánovas Izquierdo, J. García Molina

Jesús García Molina is a
full professor in the Depart-
ment of Informatics and Sys-
tems at the University of Murcia
(Spain), where he leads the
Modelum group, an R&D group
with focus on Model-Driven
Engineering and close partner-
ship with industry. His research
interests include model-driven
development, domain-specific
languages, and model-driven
modernization. He received his
Ph.D. in physical chemistry from
the University of Murcia.

123

www.manaraa.com

Copyright of Software & Systems Modeling is the property of Springer Science & Business
Media B.V. and its content may not be copied or emailed to multiple sites or posted to a
listserv without the copyright holder's express written permission. However, users may print,
download, or email articles for individual use.

	Extracting models from source code in software modernization
	Abstract
	1 Introduction
	2 Model extraction from source code
	2.1 Approaches for model extraction
	2.1.1 Dedicated parsers
	2.1.2 DSL definition tools
	2.1.3 Program transformation languages
	2.1.4 Model transformation languages

	2.2 Our approach for model extraction

	3 A query language for concrete syntax trees
	4 The Gra2MoL language
	4.1 Bindings and rule conformance
	4.1.1 Rule conformance
	4.1.2 Type conformance
	4.1.3 Well-formed transformation definition

	4.2 Rule evaluation
	4.3 Skip and mixin rules
	4.4 Implementation
	4.5 Extension mechanism

	5 Example
	5.1 The Delphi grammar
	5.2 The ASTM metamodel
	5.3 Transformation rules dealing with statements
	5.4 Transformation rules dealing with expressions

	6 Conclusions and future work
	Acknowledgments
	References

